
Chromattic
Chromattic Reference Guide

Julien Viet

eXo Platform

Alain Defrance

eXo Platform
Copyright © 2010 eXo Platform SAS

Table of Contents

Preface

1. Getting started with Chromattic
1.1. The website example

2. Type mapping
2.1. Primary type mapping
2.2. Property mapping

3. Hierarchical mapping
3.1. One-to-many/many-to-one hierarchical relationship mapping
3.2. One-to-one hierarchical relationship mapping

4. Reference mapping
4.1. One-to-many/many-to-one reference relationship mapping
4.2. One-to-many/many-to-one path relationship mapping

5. Groovy integration
5.1. Differences with the java version
5.2. Building a Groovy project with Chromattic
5.3. Runtime dependencies
5.4. How to access to JCR data through Chromattic objects in Groovy

List of Examples

1. Directory listing with the JCR native API
2. Directory listing with Chromattic objects
1.1. The Page class
1.2. The org.chromattic.docs.reference.gettingstarted.package-info.java file package
3.1. Moving a child from the first position to the last position
3.2. Child insertion
3.3. Obtaining a particular child
3.4. Child removal
3.5. The rootPage property
3.6. The site property

Preface
Chromattic development started during July 2009 when I had to develop a rich model called MOP
(Model Object for Portals) that was persisted in a JCR repository. The development started with
the prototyping of the model as a set of Java interfaces, just bare interfaces plus a set of value
objects. Once I was satisfied with the initial model, I decided it was time to write the JCR
persistence implementation and quickly I realized that I would not be able to achieve it without the
help of a tool.

Obviously the idea of using a mapping framework stroke me and I fell in the Not Invented Here
syndrom for some reason.

If you are reading this chapter it's probably because you are not yet convinced that Chromattic can

do something useful for you (if you are already convinced, read this chapter anyway so you can
convince other persons) and is probably not enough to convince you.some reason

JCR defines a set of base node types for modelling a file system and that's a perfect example to
use:

: a super type for file and folder, its purpose is mainly to define ant:hierarchyNode

common node type for children of a folder

: a node type for modelling a resource, basically it's datant:resource

: a node type for a file, it contains data via a child node of type nt:file jcr:content

nt:resource

: a node type for a folder with children of type nt:folder nt:hierarchynode

The following examples list the content of a directory structure and we have two versions, one
using the native JCR API and one using Chromattic objects mapped onto the same node types.

Example 1. Directory listing with the JCR native API

 list(Node node) RepositoryException {private void throws
 (!node.isNodeType()) {if "nt:hierarchyNode"
 IllegalArgumentException();throw new "The provided node is not a hierarchy node"
 }
 (node.isNodeType()) {if "nt:file"
 (node.hasNode()) {if "jcr:content"
 Node content = node.getNode();"jcr:content"
 String encoding = null;
 (content.hasProperty()) {if "jcr:encoding"
 encoding = content.getProperty().getString();"jcr:encoding"
 }
 String mimeType = content.getProperty().getString();"jcr:mimeType"
 System.out.println(+ node.getName() + + mimeType +"File[name=" ",mime-type="
 + encoding +);",encoding=" "]"
 }
 } (node.isNodeType()) {else if "nt:folder"
 System.out.println(+ node.getName() +);"Folder[" "]"
 (NodeIterator i = node.getNodes();i.hasNext();) {for
 list(i.nextNode());
 }
 }
 }

Example 2. Directory listing with Chromattic objects

 list(NTHierarchyNode hierarchy) {private void
 (hierarchy NTFile) {if instanceof
 NTFile file = (NTFile)hierarchy;
 Resource content = file.getContentResource();
 (content != null) {if
 System.out.println(+ file.getName() + + content.getMimeType() +"File[name=" ",mime-type="
 + content.getEncoding() +);",encoding=" "]"
 }
 } {else
 NTFolder folder = (NTFolder)hierarchy;
 System.out.println(+ folder.getName() +);"Folder[" "]"
 (NTHierarchyNode child : folder.getChildren().values()) {for
 list(child);
 }
 }
 }

There are several difference between the two versions, but the most important one is .type safety
The JCR version use objects and the main drawback is that the effective typejavax.jcr.Node

of a node is never known until runtime. Chromattic main purpose is to provide type safety to Java
programs that use JCR:

The method argument is typed with and that guarantees that thelist NTHierarchyNode

method will never be invoked with an appropriate node type, this guarantee is enforced
during the compilation of any program that wants to invoke the method.list

The operator is what a Java developer uses when he wants to determine theinstanceof

type of an object. The JCR version performs the same operation but there is more work to
do.

The second benefit is object oriented programming: each node turns into a Chromattic object, and
on that object you can add any method you need to. This is just what we use in this example with
the method on the object.getContentResource() NTFile

The third benefit is productivity: modern IDEs provide an impressive set of tools that gives a lot of
power to the developer, Chromattic type safe and object oriented nature is a perfect fit:

A Chromattic object is a Java object and the IDE is able to perform code completion.

Refactoring is a commodity offered by any IDE that can be leveraged on a Chromattic
model.

There are many other reasons left to use Chromattic, let's discover them in this guide.

Page 6 of 30

1
Getting started with Chromattic

This chapter introduces you to the basic of Chromattic and the Java Content Repository to object
mapping. We will show the most basic Chromattic application and focus on the various steps to
build this application.

1.1. The website example
The project example models a web site persisted in a JCR server. The site contains web pages
that are organized according to a tree structure making easy to display the pages on the web. The
natural JCR hierarchy tree shape will model the hierarchy of the pages.

1.1.1. The Page object

The class is the objectorg.chromattic.docs.reference.gettingstarted.Page

representation of a web page. The object is mapped to the JCR node type. The Page page Page

class contains the properties we want for the representation of a web page:

The property is the web page name and is mapped to the JCR node name.name

The property is the page title and is mapped to the JCR node property of type title title
.STRING

The property is the page content and is mapped to the JCR node propertycontent content
of type .STRING

The Javabean properties needs to be modelled as abstract methods because it allows
Chromattic to implement them to make the mapping between objects and node possible.

Page 7 of 30

Example 1.1. The Page class

/**
 * The page of a site.
 */

 @PrimaryType(name = "gs:page")
 Page {public abstract class

 /**
 * Returns the page name.
 * @return the page name
 */
 @Name
 String getName(); public abstract

 /**
 * Returns the page title.
 * @return the page title
 */
 @Property(name = "title")
 String getTitle(); public abstract

 /**
 * Updates the page title.
 * @param title the new page title
 */
 setTitle(String title);public abstract void

 /**
 * Returns the page content.
 * @return the page content
 */
 @Property(name = "content")
 String getContent(); public abstract

 /**
 * Updates the page content.
 * @param content the new page content
 */
 setContent(String content);public abstract void

}

The Page class is mapped to the page node type

The name property is mapped to the node name

The title property is mapped to the title node property

The content property is mapped to the content node property

Chromattic uses code annotations to declare which and how classes are mapped to node types.
The most important annotation is the @org.chromattic.api.annotations.PrimaryType
that declares the mapping of a class to a node type. Our class is annotated with the

Page 8 of 30

 annotation, the parameter specifies the name of the node type mapped to@PrimaryType name

the class.

JCR defines two kinds of node types which are primary node type and mixin node type. By
default we denote by node type a primary node type. Mixin node type can also be mapped by
Chromattic that is explained in the chapter XYZ.

The annotation targets Javabean property getters@org.chromattic.api.annotations.Name

or setters and indicates that the property is mapped to the name of the node. Indeed each JCR
node has a mandatory name and this is the way to expose it on a class. As a result the Page name
property is mapped to the node name.

Like the annotation the annotation@Name @org.chromattic.api.annotations.Property

targets Javabean properties. It specifies how a property is mapped to a node property. It has a
mandatory parameter that specifies the node property name. The node property type doesname

not need to be specified as it is deduced from the class property. In our example, we map the
 Javabean property to a node property.content content

1.1.2. The JCR node types

Node types are important for JCR, they define the schema of the node data. In our application we
have a node type that is modelled after the class. Chromattic can generate for you thepage Page

node type definition when the classes are compiled. It results in a file resourcesnodetype.xml

located in the class output of the Java compiler.tm

The annotation instructs the compiler toorg.chromattic.api.annotations.NodeTypeDefs

generate the the node type definitions in the XML format that can be used by the JCR server to
create the node type. The annotation targets a package and it generate the node type for any
Chromattic class inside this package and in the sub packages.

Example 1.2. The org.chromattic.docs.reference.gettingstarted.package-info.java file package

@NodeTypeDefs org.chromattic.docs.reference.gettingstarted;package

 org.chromattic.api.annotations.NodeTypeDefs;import

The node type generation is still a work in progress and should be considered as an
experimental feature

1.1.3. The client

We have designed and mapped our object and now we will examine how to interact with aPage

JCR server via Chromattic. The goal of the client is very simple and focus on demonstrating the
bootstrap of Chromattic and the persistence of a simple in the Java Content Repository.Page

Page 9 of 30

1.1.3.1. Chromattic bootstrap

The boostrap is the creation and the configuration of the Chromattic runtime. Usually the bootstrap
occurs during the initialization of the application, for instance in a web application, it is most often
performed in a initialization.ServletContextListener

Chromattic bootstrap relies mainly on the object. The builder is configuredChromatticBuilder

with the Chromattic application classes to obtain an instance of the object. The Chromattic

 object can be used to create objects. The Chromattic ChromatticSession

 is the main runtime API used to interract with Chromattic.ChromatticSession

 ChromatticBuilder builder = ChromatticBuilder.create();
 builder.add(Page.); class
 Chromattic chromattic = builder.build();

Creates the builder object

We add the Page class to the builder object

Now the Chromattic object can be created

1.1.3.2. Interacting with Chromattic objects

We have just explained how to obtain a object thanks to the builder. Now it is time toChromattic

show how to obtain and use the with the goal to insert a new page node.ChromatticSession

Let's examine the code:

 ChromatticSession session = chromattic.openSession();
 try
 {
 Page page = session.insert(Page. ,); class "index"
 page.setTitle(); "Hello Page"
 page.setContent(); "Hello World"
 session.save();
 }
 finally
 {
 session.close();
 }

Any Chromattic interaction requires to open a session

A new page is inserted under the /index path

Set the title property

Set the content property

Saves the session to persist changes in the repository

Page 10 of 30

We must close the session to properly release the session

1.1.4. Project build

The project build is an important piece of the software infrastructure and Chromattic has been
developped to integrate seamlessly with the build.

Chromattic leverages the (abbreviated as APT) that works atJava 6 Annotation Processor Tooltm

the Java compiler level and therefore there is nothing much to do to integrate Chromattic in thetm

build itself.

As many Object Relational Mapping tool, Chromattic needs a bit of instrumentation to make the
magic work. Chromattic does not modify existing classes, it takes the existing classes and adds
new classes and that is achieved thanks to the APT plugin. It means that instrumentation is

performed at the compilation time by generating Java source file that are compiled by thetm

compiler instead of generating those classes at the load time in the virtual machine.

The only condition to enable Chromattic instrumentation is to have the Chromattic APT jar on the
compilation classpath. Nothing more, nothing less.

1.1.4.1. Building with Maven

Building with Maven is very easy and only requires a dependency on the Chromattic API and APT
module in your pom file.

The API dependency provides the Chromattic API classes prefixed with the
 package.org.chromattic.api

<dependency>
 org.chromattic<groupId> </groupId>
 chromattic.api<artifactId> </artifactId>
</dependency>

The APT dependency triggers the Chromattic instrumentation.

<dependency>
 org.chromattic<groupId> </groupId>
 chromattic.apt<artifactId> </artifactId>
</dependency>

And that's it, we have just configured our project.

1.1.5. Running the client

The client requires different jars for running

todo : provide an uber client jar

http://java.sun.com/javase/6/docs/technotes/guides/apt/index.html

Page 11 of 30

2
Type mapping

Chromattic establishes a correspondance between a Java class and a JCR node type. In most
case there is a trivial mapping between a Java class and a JCR node type, however both models
are not the same. Chromattic offers solutions for mapping JCR concepts like mixin and multiple
type inheritance which are not native to the Java language.

2.1. Primary type mapping
The annotation creates a uniqueorg.chromattic.api.annotations.PrimaryType

correspondance between a Java class and JCR primary node type. The mapping between an
annotated class and the primary type must be unique for the JCR node type, therefore it is not
possible to have the same node type mapped to more than one class inside the same Chromattic
application.

Page 12 of 30

2.2. Property mapping

2.2.1. Property type mapping

JCR defines the following set of property types:

The typeSTRING

The typeBOOLEAN

The typeLONG

The typeDOUBLE

The typeDATE

The typeNAME

The typeBINARY

The typePATH

The typeREFERENCE

Any of those types except the type can be mapped to an object property.REFERENCE

 types can be used, however this type is not mapped to a specific Java type, insteadREFERENCE

Chromattic supports it thanks to the concept of relationship that will be explained in the Chapter 4,
.Reference mapping

2.2.1.1. Generic data types

JCR provides two types to map generic data types:

The JCR type is mapped to the Java type.STRING java.lang.String

The JCR type is mapped to the Java type or the BINARY byte[] java.io.InputStream

type.

The string type is pretty straightforward to use, you simplet get or set the string that is mapped to
the JCR property.

The binary type can be used in two different manners, the first one maps the type to aBINARY

byte array. This mapping style is similar to the string mapping except that a byte array is not
immutable. The client has the opportunity to alter the array as Chromattic cannot prevent it to be
modified. This mapping style is very straightforward too but has the inconvenient to load the whole
stream into memory which is not always desirable for very large streams.

The other manner maps the type to an . This behavior is actuallyBINARY java.io.InputStream

the JCR native behavior and Chromattic provides it as well, as it has the benefit to use an input

Page 13 of 30

1.

1.

2.

2.

stream to read and write binary data which is efficient for large binary content. This approach does
not force to hold all the data in memory, unlike the byte array approach. However it requires a little
extra work from the developer to use the input stream carefully.

To read the data, the property getter returns an input stream that provides access to the binary
data. The stream should be used as any other kind of input stream: consume data until the stream
is empty and then close the stream in a finally block. The stream must be used corrected,
otherwise the entire content could be loaded in memory and that would defeat the purpose of the
stream based approach.

To write data, the property setter must be called with an input stream that is used to consume all
the data available. It means that on the return of the setter, the input stream shouldn't be used
anymore for reading data as Chromattic will close the stream. Again here, the stream must be
used carefully.

2.2.1.2. Primitive types

The types , and are mapped to Java primitive types:BOOLEAN LONG DOUBLE

The JCR type is mapped to the Java typeBOOLEAN boolean

The JCR type is mapped to either the Java or typeLONG int long

The JCR type is mapped to either the Java or typeDOUBLE double float

For each of those types, there is the choice between either the Java primitive type or the Java
wrapper type.

2.2.1.3. Temporal type

JCR defines a type that represents a date. Chromattic provides three different mappings forDATE

this type:

Java date objects

 mapping, the same type exposed by the native JCR API.java.util.Calendar

 mappingjava.util.Date

 or mapping exposing the value returned by java.lang.Long long

Calendar#getTimeMillis()

Date objects objects are mutable by nature and Chromattic clones them when it is necessary to
preserve the data. A date object returned by Chromattic can be modified without changing mapped
JCR value, likewise a property update will read the value once and copy it.

2.2.2. Simple property mapping

The annotation binds an object to a nodeorg.chromattic.api.annotations.Property

property. Our shows several examples of property mapping using the Page @Property

annotation. This annotation has a mandatory parameter to provide the name of thename

corresponding JCR property.

Page 14 of 30

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)

 Property {public @interface

 /**
 * The jcr property namen either qualified or unqualified.
 *
 * @return the jcr property name
 */
 String name();

 /**
 * Specify the property type of the mapped property, the value must be a legal value referenced by
 * {@code javax.jcr.PropertyType}. The default value returned is -1 which means that the value is determined
 * by Chromattic according to the type of the annotated property.
 *
 * @return the property type value.
 * @since 1.1
 */
 type() - ;int default 1

}

The annotation can either annotate the getter or annotate the setter but it should beProperty

used only once with read/write accessible properties.

2.2.2.1. Single valued property mapping

The most common mapping style between a single valued class and a node property. The object
property must provide at least a setter method or a getter method, probably both in most use
cases, those methods must use the same java property type.

A property getter method returns the JCR property value. If the property does not exist, the null
value is returned when the java property type is not a primitive type. Sometimes it can happen that
the JCR property does not exist but this property is mapped to a primitive type. When the situation
occurs Chromattic throws a , that behavior is similar to what happensNullPointerException

when a null value is unboxed to its corresponding primitive type.

A property setter method updates the JCR property value when it is invoked. For non primitive type
it is possible to delete the property by providing a null argument.

Page 15 of 30

 /**
 * Returns the page title.
 *
 * @return the page title
 */
 @Property(name = "title")
 String getTitle(); public abstract

 /**
 * Updates the page title.
 *
 * @param title the new page title
 */
 setTitle(String title);public abstract void

 /**
 * Returns the date of the page last modification.
 *
 * @return the date of the last modification
 */
 @Property(name = "lastmodifieddate")
 Date getLastModifiedDate(); public abstract

 /**
 * Updates the date of the page last modification.
 *
 * @param date the date of the last modification
 */
 setLastModifiedDate(Date date);public abstract void

The title property is mapped the typeSTRING

the last modified date property is mapped to the typeDATE

The corresponding JCR node defines a title property and lastModifiedDate property:

<propertyDefinition = = = = = = =autoCreated "false" mandatory "false" multiple "false" name "title" onParentVersion "COPY" protected "false" requiredType "String">
 <valueConstraints/>
</propertyDefinition>

 = = = = = = =<propertyDefinition autoCreated "false" mandatory "false" multiple "false" name "lastmodifieddate" onParentVersion "COPY" protected "false" requiredType "Date">
 <valueConstraints/>
</propertyDefinition>

2.2.2.2. Multi valued property mapping

JCR naturally provide support for multi valued properties, so does Chromattic. Chromattic gives
you the choice to use either an array or a to access the data. A primitive arrayjava.util.List

can be used when the type is a primitive type.

Page 16 of 30

 /**
 * Returns the list of the page tags.
 *
 * @return the list of tags
 */
 @Property(name = "tags")
 List<String> getTags(); public abstract

the tags property is mapped to a multi valued typeSTRING

The corresponding JCR node defines a tags properties:

<propertyDefinition = = = = = = =autoCreated "false" mandatory "false" multiple "true" name "tags" onParentVersion "COPY" protected "false" requiredType "String">
 <valueConstraints/>
</propertyDefinition>

When a list of values is returned by a getter method, any modification to this list is only visible to
this list and does not affect the JCR property values. When the JCR property does not exist, a null
value is returned to the caller.

To update the values of a JCR property, the property setter has to be invoked. The list of values is
read once and copied to the corresponding JCR property. If the list is null, it simply delete the
property.

2.2.2.3. Mixing multi value and single value styles

It can be convenient to map a single valued property to a multi valued property. For instance a
multi valued JCR property exposed as a single valued property provides access to the first value of
the values.

JCR single valued JCR multi valued

Java single valued trivial mapping access the first element

Java multi valued a list of size 1 trivial mapping

The same multi valued JCR property can be exposed both as a single and multi valued property.
The multi valued property gives access to the complete list of values and the single valued
property is useful when the first value needs to be accessed.

2.2.3. Residual property mapping

JCR provides the notion of residual properies which are denoted by a name. It provides a*

convenient and generic storage for properties and can store pretty much any property name that is
not already declared by the node itself directly or by inheritance. Such property set is mapped in
Chromattic thanks to the annotation:org.chromattic.api.annotations.Properties

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)

 Properties {public @interface
}

Page 17 of 30

2.2.3.1. Single valued residual property mapping

Such mapping is achieved by using the type where can bejava.util.Map<String, V> V

a simple type mapped by Chromattic, such as , , etc... Such simple type isString Integer

mapped to a JCR specific type, for instance is mapped to the JCR propertyString STRING

type.

the type mapped to the JCR property type allowing a veryjava.lang.Object UNDEFINED

generic storage, however that kind of mapping is not type safe.

2.2.3.2. Multi valued residual property mapping

Likewise Chromattic is able to manage multi valued simple properties, the support of multi valued
residual properties is available thanks to the usage of the java.util.Map<String, List<V>>
type.

Page 18 of 30

3
Hierarchical mapping

Chromattic makes the usage of the JCR node hierarchy very natural thanks to relationship
mapping. Chromattic defines two mapping styles one-to-many/many-to-one and one-to-one
mapping. The one-to-one mapping is useful for accessing the particular child of a node, the
one-to-many-many-to-one mapping is useful for accessing residual node definitions defined by a
wildcard (*) name.

3.1. One-to-many/many-to-one hierarchical relationship mapping
The usage of Java generics combined with different types of collection provides a flexible mapping.
Java generics allows collection filtering based on the type of the collection, it becomes handy when
you need to access the a subset of the child nodes filtered with a specific node type (make a
chapter on genericity).

Chromattic provides access to the children of node with a Java collection. A bean annotates a
collection valued getter with the annotation.@OneToMany

 /**
 * Returns the collection of page children.
 *
 * @return the children
 */
 @OneToMany
 Collection<Page> getChildren();public abstract

The getter method never returns a null value as a node always provides a set of children even if
this set is empty. Unlike for multi valued property collection, any modification to this collection will
be reflected directly by the underlying JCR node children and vice versa:

The adds a pageadd(Page page)

The removes a pageremove(Object o)

The removes all the page childrenclear()

The returns an that can be used to remove any childiterator() iterator

Page 19 of 30

1.

2.

The other collection methods of the collection class are read methods that won't modify the
children and provides various ways to deal with the children.

The object also provides to its parent with a property annotated with the Page ManyToOne

annotation. The getter method returns the object associated to the parent node.

 /**
 * Returns the page parent.
 *
 * @return the parent
 */
 @ManyToOne
 Page getParent();public abstract

 /**
 * Update the page parent.
 *
 * @param page the parent
 */
 setParent(Page page);public abstract void

A null value can be obtained in two particular situations:

When an object is associated to the root node, indeed the root node is the only node without
a parent

When an object has a parent of a JCR node type that is not mapped to the Chromattic object
returned the getter

It is legal for an object to have several parent accessors when the corresponding JCR node type
can have different parent node types. When the various parent types share a common parent
class, this class can be used to have a single accessor instead. Ultimately it is possible to use the

 type that is implicitely mapped to the node typen, the java.lang.Object nt:base nt:base

node type is the super type of all JCR node types. (todo: make a section about that somewhere
else to clarify)

3.1.1. Adding a child node

There are several ways for adding a child and we are going to examine two of them in this section.

The first way to add a child is to use the collection returned by the parent object. As said earlier,
any modification to the collection is directly reflected into the corresponding JCR node.

 Page child = session.create(Page. ,); class "bar"
 Collection<Page> children = page.getChildren();
 children.add(child);
 assertSame(page, child.getParent());

Create the transient page object

Obtain the children collection from the parent

Page 20 of 30

The child becomes persistent and the bar node is created under the foo node

The parent is set to foo

The second way is to use to add a child is to use the parent setter.

 Page child = session.create(Page. ,); class "bar"
 child.setParent(page);
 assertTrue(page.getChildren().contains(child));

Create the transient page object

The child becomes persistent and the bar node is created under the foo node

The children collection contains the child

Setting the parent to the child has the same effect than adding the child to the collection. Indeed
we can notice in both examples that the when one style is used, we get the same result: the parent
getter returns the parent object and the children collection contains the child.

In both case, Chromattic will use the name set on the child before it is inserted in its parent. The
session method call takes as second argument the name of the future child. This name iscreate

stored temporarily on the create child and is used when the node is effectively inserted.

3.1.2. Destroying a node

We have explained two ways for adding a child to a parent, we will now see that we can use the
same methods to destroy a node and its relationship to its parent (indeed in JCR, the only node
with no parent is the root node).

When a child is removed from its parent collection, it is removed.

 children.remove(child);
 assertFalse(page.getChildren().contains(child));

Removing the child from the collection destroys the child

And the parent does not contain the child anymore

Setting the parent of a Chromattic object to null forces Chromattic to remove the object and the
associated node.

 child.setParent(null);
 assertFalse(page.getChildren().contains(child));

Setting the parent to null destroys the child

And the parent does not contain the child anymore

Page 21 of 30

3.1.3. Collection types

In our example we have examined the side of the relationship based on a ManyToOne

 interface. Two other type of mapping are available java.util.Collection java.util.List

and , let's study what would become our example with such mappings.java.util.Map

3.1.3.1. mappingjava.util.List

The list mapping must be only used when the corresponding node type has defined its children to
be ordered. The list interface adds the notion of order to the collection interface, and using the
order oriented method on the list will affect the order of the children.

Example 3.1. Moving a child from the first position to the last position

children.add(children.get());0

3.1.3.2. mappingjava.util.Map

The map interface adds the notion of key which is very useful when the children needs to be
accessed by their key. Previously we have seen that when the child is created from the session, its
name has to be specifed. When the map interface is used, this is not necessary anymore, as the
child name is specified when it is inserted with the operation.put(String key, Page value)

Example 3.2. Child insertion

Page page = session.create(Page.);class
children.put(, page);"foo"

Example 3.3. Obtaining a particular child

Page foo = children.get();"foo"

Example 3.4. Child removal

children.remove();"foo"

3.2. One-to-one hierarchical relationship mapping
In the we explainedSection 3.1, “One-to-many/many-to-one hierarchical relationship mapping ”
how to map a node and a its children. One to one hierarchical mapping is about mapping a node
and one of its named children thanks to a one-to-one relationship. The most important difference
between the two mapping styles is that a one-to-one relationship acts on a precise child defined by
its name.

In our example, this type of relationship is used to model the relationship between a website and

Page 22 of 30

the root of the page hierarchy of this website. The object is mapped to the nodeWebSite website
and this node has a child named . The one-to-one relationship between objectsrootpage WebSite

and objects is precisely defined for the child of the node.Page rootpage website

Mapping one-to-many/many-to-one hierarchical relationship was only requiring the @OneToMany
and annotations. One-to-one relationship mapping requires two additional@ManyToOne

annotations:

The annotation makes the distinction between the parent and the child of the@Owner

relationship. The parent object must be annotated with the annotation and the child@Owner

not.

The annotation provides the name of the node by which the relationship is@MappedBy

maintained. It contains a single parameter the is the name of the child.

Example 3.5. The rootPage property

 /**
 * Returns the root page of the website.
 *
 * @return the root page
 */
 @Owner
 @OneToOne
 @MappedBy("root")
 Page getRootPage();public abstract

 /**
 * Sets the root page of the website.
 *
 * @param root the root page
 */
 setRootPage(Page root);public abstract void

Example 3.6. The site property

 /**
 * Returns the parent site.
 *
 * @return the parent site
 */
 @OneToOne
 @MappedBy("root")
 WebSite getSite();public abstract

/todo explain the dynamic of relationship life cycle

 Page root = session.create(Page.); class
 site.setRootPage(root);
 assertEquals(site, root.getSite());
 session.save();

Page 23 of 30

Create the transient page object

The page becomes persistent and the node is inserted under the noderoot site

The parent of the root page is the site object

 site.setRootPage(null);

Setting the root page to null destroys the relationship

Page 24 of 30

4
Reference mapping

The hierarchical tree structure supported by JCR is the default way to organize data. JCR provides
a reference mechanism for relationship between nodes, a node has a pointer to target node via a
property. The relationship is based on two specific property types:

The property type references a target node using its UUID.REFERENCE

The property type references a target node using its path.PATH

The single kind of relationship supported by reference is one-to-many/many-to-one: a node
references a target node and a node can be the target of multiple nodes.

Technically it should be possible to support many-to-many relationship using a multivalued
reference property. This feature could be implemented in the future.

4.1. One-to-many/many-to-one reference relationship mapping
Mapping single valued reference properties to Chromattic relationship relationship relies on Java
collections, in a similar manner hierarchical does.one-to-many/many-to-one relationship

The and annotations declares the relationship, however as it is not a@OneToMany @ManyToOne

hierarchical parent child relationship, the type of the annotation must be set to
.RelatonshipType.REFERENCE

The object has a reference to a object. The Page Content @ManyToOne(type =

 annotation on the property of object declaresRelationshipType.REFERENCE) content Page

the relationship from the side.Page

Page 25 of 30

 /**
 * Returns the content associated to this page.
 *
 * @return the content
 */
 @ManyToOne(type = RelationshipType.REFERENCE)
 @MappedBy("content")
 Content getContent();public abstract

 /**
 * Set thet content on this page
 *
 * @param content the content
 */
 setContent(Content content);public abstract void

Conversely the object owns a collection of objects, each of those having aContent Page

reference pointing to this object. The #OneToMany(type = RelationshipType.REFERENCE)
annotation on the property declares the relationship from the side. Unlike the pages Content

 relationship, the only possible type of collection is the one-to-many java.util.Collection

interface because there isn't any notion of order, not name in such relationship.

 /**
 * Returns all the pages associated with this content.
 *
 * @return the associated pages
 */
 @OneToMany(type = RelationshipType.REFERENCE)
 @MappedBy("content")
 Collection<Page> getPages();public abstract

Again here, the relationship between two objects is established when a object is added to thePage

pages collection of a object or when a object is set by invoking the Content Content

 method on the object.setContent(Content content) Page

4.2. One-to-many/many-to-one path relationship mapping
/todo /todo

Page 26 of 30

5
Groovy integration

5.1. Differences with the java version
In the Groovy version of Chromattic, the types are not abstract and annotations can be used
directly on properties. The Chromattic engine in the Groovy version is exactly the same than the
Java version. Actually Groovy and Java are interroperable

Groovy and Java Chromattic objects can be used in the same Chromattic application

A Chromattic application can be used by both Java or Groovy code

Before reading this part, you should already be familliar with Chromattic described in this guide. A
simple example of code with the Groovy version of Chromattic : (the equivalent of Page.groovy

) in Groovy isPage.java

Page 27 of 30

package org.chromattic.docs.reference.groovy

 org.chromattic.api.annotations.Nameimport
 org.chromattic.api.annotations.Propertyimport
 org.chromattic.api.annotations.PrimaryTypeimport

/**
 * @author Alain Defrance
 * @version $Revision$
 */
@PrimaryType(name = "gs:page")

 Page {class
 /**
 * The page name.
 */
 def String name @Name

 /**
 * The page title.
 */
 def String title @Property(name = "title")

 /**
 * The page content.
 */
 def String content @Property(name = "content")
}

The name property is mapped to the node name

The title property is mapped to the title node property

The content property is mapped to the content node property

5.2. Building a Groovy project with Chromattic
Chromattic is plugged to Groovy classes at compile time (this operation is based on AST
transformation). So the only thing to do is to have the jar in the compilationchromattic.groovy
classpath.

5.2.1. Building with Maven

Just add the Maven dependencies in the pom.xml.

...
<dependency>
 org.chromattic<groupId> </groupId>
 chromattic.groovy<artifactId> </artifactId>
 compile<score> </score>
</dependency>
...

Page 28 of 30

5.2.2. Building with ANT

Add the jar in the classpath in the .chromattic.groovy build.xml

<classpath>
 =<pathelement path "${classpath}"/>
 =<pathelement location "lib/chromattic.groovy-1.1.0-SNAPSHOT-jar-with-dependencies.jar"/>
</classpath>

5.2.3. Compiling with groovyc

Just add the jar in the classpath with the argumentchromattic.groovy -classpath

groovyc Page.groovy -classpath chromattic.groovy-1.1.0-SNAPSHOT-jar-with-dependencies.jar

5.3. Runtime dependencies
To use Chromattic, you should have a JCR implementation in the runtime classpath. For example

 Maven dependency:chromattic.exo

<dependency>
 org.chromattic<groupId> </groupId>
 chromattic.exo<artifactId> </artifactId>
 runtime<scope> </scope>
</dependency>

5.4. How to access to JCR data through Chromattic objects in Groovy
Simply access to the property content thanks to getter, setter or property :

Page 29 of 30

package org.chromattic.docs.reference.groovy

 junit.framework.TestCaseimport
 org.chromattic.api.ChromatticBuilderimport
 org.chromattic.api.Chromatticimport
 org.chromattic.api.ChromatticSessionimport
 org.chromattic.docs.reference.groovy.Pageimport

/**
 * @author Alain Defrance
 * @version $Revision$
 */

 GroovyTestCase TestCase {class extends
 testGroovy() {void
 ChromatticBuilder builder = ChromatticBuilder.create();
 builder.add(org.chromattic.docs.reference.groovy.Page.); class
 Chromattic chromattic = builder.build();

 ChromatticSession session = chromattic.openSession();
 try
 {
 Page page = session.insert(Page. ,); class "index"
 page.setTitle(); "Hello Page"
 page.content = ; "Hello World"
 session.save();

 String title = page.title;
 String content = page.getContent();
 }
 finally
 {
 session.close();
 }
 }
}

Creates the builder object

We add the Page class to the builder object

We must close the session to properly release the session

Now the Chromattic object can be created

Any Chromattic interaction requires to open a session

A new page is inserted under the /index path

Set the title property with setter

Set the content property without setter

Saves the session to persist changes in the repository

Get the title property without getter

Page 30 of 30

Get the title property with getter

