Chromattic Reference Guide

Chromattic

omattic

Julien Viet (eXo Platform), Alain Defrance (eXo Platform)

Copyright © 2010

1. Getting started With ChromatliCooiciiiiiiiie e e e a e e e 1
1.1. The WEDSITE EXAIMPIEoeiiiiiiiiie ettt e e e e e e s anr e e e e e eas 1

0 O 1 N =T X o] o o PRSPPI 1

1.1.2. ThE JCR NOUE LYPESeeeeeeiiieiee ettt ettt e e e e et e e e e e e s e es 2

0 R T I Y o 1= o | PO PPRPPRR 3

114 ProjECE BUIT ...t e e 4

115 RUNNING ThE CHENE ..ooiiieiee e e e e e e e e e e e e e e 4

P Y/ oL 0= T oo PSSP 5
2.1, Primary tyPE MBEBPPINGceeeeeiiureeeeeaiteeeeeateeeeeaasseeeesasseeeeaasee e e e aasbe e e e e asbeeeesanneeeeaannneeeeannes 5

2.2, Property MaPPINGuuvreeeeeee e iiiiiet et e e e e e s e et e e e e e e s s s et e e e e e e e e s saaa b —reeaaaeeaaaatnra—eraaaeeeaaanrrres 5
2.2.1. Property tyPe MaPPINGeeeesuurreeeiiteeeeeaiteeeeaasseeeesssteeeesaassseeesanneeeesstsneeeaanreeessnnnes 5

2.2.2. SIMple property MappinNgcccooeeeeeeee e 6

2.3. Overview of other mappPiNg SEYIESoeiiiiiiiiee e 9

I o 1= o g o= N 0 7= o oo SR 10
3.1. One-to-many/many-to-one hierarchical relationship Mappingceeevveeciviveeeeeeeeeeecciiieeeeean. 10
311 Adding @Child NOE ... 11

3.1.2. DESIIOYING ANOUEuviiiiiiiee ettt e e e e e e e s s e e e e e e e s s st bt e e e e e e e e e s ennnneees 11

3.1.3. COlECLON TYPES ...eeeeieeeiieiee ettt e et e e e e e e e eeeeans 12

3.2. One-to-one hierarchical relationship MappiNgcoovvvviieiiiiiiiiieieeeeeeeeee e 13

4. REFEIENCE MEPIPING ...eteeieeiiteie ettt ettt e bttt e e e st et e e e e bt et e e et b et e e e aabb e e e e e nbb e e e e annbeeeeaanbneeeeans 15
4.1. One-to-many/many-to-one reference relationship MapPINgcceovvvrreeeinireeeeniiieee e 15

4.2. One-to-many/many-to-one path relationship mappingccccoveveeei i, 16

5. GrOOVY INTEGIBIIONeeeeeiiiieie e ettt e ettt e sttt e e et e e e ettt e e e e s et e e e as e e e e e s be e e e e annbe e e e e annreeeeaanbrneeeans 17
5.1. Differences With the JaVa VErSIONcooiiiiiiiiiiiee e 17

5.2. Building a Groovy project With ChromMBaLtiCeeveiiiiiieeiiiiie e 17
521 BuildingwithMaven ... 17

5.2.2. BUIAING WIth ANT L.oeeiiiiiiii et e e e e e e e s e raaee e s 18

5.2.3. ComPiliNg WIth QrOOVYCcvveiiiiiiieieie e 18

5.3. RUNIME AEPENAENCIESeeiieeeiiiiiiie ettt s e e e e e e s e st e e e e e e e s eeatbbneeeaaaeeeans 18

5.4. How to access to JCR data through Chromattic objectSin Groovyccccccoviieeeeniiiineennns 18

Preface

Chromattic development started during July 2009 when | had to develop a rich model called MOP (Model
Object for Portals) that was persisted in a JCR repository. The development started with the prototyping of the
model as a set of Java interfaces, just bare interfaces plus a set of value objects. Once | was satisfied with the
initial model, | decided it was time to write the JCR persistence implementation and quickly | realized that |
would not be able to achieve it without the help of atool.

Obvioudly the idea of using a mapping framework stroke me and | fell in the Not Invented Here syndrom for
some reason.

If you are reading this chapter it's probably because you are not yet convinced that Chromattic can do
something useful for you (if you are already convinced, read this chapter anyway so you can convince other
persons) and some reason is probably not enough to convince you.

JCR defines a set of base node types for modelling afile system and that's a perfect example to use:

 nt: hi erarchyNode: a super type for file and folder, its purpose is mainly to define a common node type for
children of afolder

e nt:resource: anodetype for modelling aresource, basicaly it's data
e nt:file:anodetypefor afile, it containsdataviaaj cr: cont ent child node of typent : r esour ce
* nt:fol der: anodetypefor afolder with children of typent : hi er ar chynode

The following examples list the content of a directory structure and we have two versions, one using the native
JCR APl and one using Chromattic objects mapped onto the same node types.

Example 1. Directory listing with the JCR native API

private void |ist(Node node) throws RepositoryException {
i f (!node.isNodeType("nt: hierarchyNode")) {
throw new |11 egal Argunent Excepti on("The provi ded node is not a hierarchy node");
}
i f (node.isNodeType("nt:file")) {
i f (node. hasNode("jcr:content")) {
Node content = node. get Node("jcr:content");
String encoding = null;
if (content.hasProperty("jcr:encoding")) {
encodi ng = content.getProperty("jcr:encoding").getString();
}
String m nmeType = content.getProperty("jcr: mnmeType").getString();
System out.println("File[name=" + node.getNanme() + ", mne-type=" + m neType +
",encodi ng=" + encoding + "]");

}

} else if (node.isNodeType("nt:folder")) {
System out.println("Folder[" + node.getNane() + "]1");
for (Nodelterator i = node.getNodes();i.hasNext();) {

l'i st(i.nextNode());

}

}

}

Example 2. Directory listing with Chromattic objects

Preface

private void |ist(NTH erarchyNode hierarchy) {
if (hierarchy instanceof NTFile) {
NTFile file = (NTFile)hierarchy;
Resource content = file.get Content Resource();

if (content != null) {
Systemout.printin("File[name=" + file.getName() + ", mne-type=" + content.getM nmeType() +
",encodi ng=" + content.getEncoding() + "]");
}
} else {

NTFol der fol der = (NTFol der) hi erarchy;
Systemout.println("Folder[" + folder.getNane() + "]");
for (NTH erarchyNode child : fol der.getChildren().values()) {
list(child);
}
}
}

There are several difference between the two versions, but the most important one is type safety. The JCR
version usej avax. j cr. Node objects and the main drawback is that the effective type of a node is never known
until runtime. Chromattic main purpose is to provide type safety to Java programs that use JCR:

e Thelist method argument istyped with NTHi er ar chyNode and that guarantees that the method will never be
invoked with an appropriate node type, this guarantee is enforced during the compilation of any program that
wantsto invoke thel i st method.

e Theinstanceof operator is what a Java developer uses when he wants to determine the type of an object.
The JCR version performs the same operation but there is more work to do.

The second benefit is object oriented programming: each node turns into a Chromattic object, and on that object
you can add any method you need to. Thisisjust what we use in this example with the get Cont ent Resour ce()
method on the NTFi | e object.

The third benefit is productivity: modern IDEs provide an impressive set of tools that gives alot of power to the
developer, Chromattic type safe and object oriented nature is a perfect fit:

» A Chromattic object is a Java object and the IDE is able to perform code completion.
» Refactoring is acommodity offered by any IDE that can be leveraged on a Chromattic model.

There are many other reasons | eft to use Chromattic, let's discover them in this guide.

Chapter 1. Getting started with Chromattic

This chapter introduces you to the basic of Chromattic and the Java Content Repository to object mapping. We
will show the most basic Chromattic application and focus on the various steps to build this application.

1.1. The website example

The project example models a web site persisted in a JCR server. The site contains web pages that are
organized according to a tree structure making easy to display the pages on the web. The natural JCR hierarchy
tree shape will model the hierarchy of the pages.

1.1.1. The Page object

Theorg. chromattic. docs. reference. gettingstarted. Page Classis the object representation of aweb page.
The pPage object is mapped to the JCR page node type. The Page class contains the properties we want for the
representation of aweb page:

« The property nane is the web page hame and is mapped to the JCR node hame.
e Theproperty titl e isthe pagetitle and is mapped to the JCR title node property of type STRI NG.

« The property cont ent isthe page content and is mapped to the JCR content node property of type STRI NG.

| mportant

"9
The Javabean properties needs to be modelled as abstract methods because it allows Chromattic to
implement them to make the mapping between objects and node possible.

Example 1.1. The Page class

/**

* The page of a site.

&/

@rimaryType(name = "gs: page") O
public abstract class Page {

/**

* Returns the page nane.

* @eturn the page nane

*/

@ame

public abstract String getName(); 0O

/**

* Returns the page title.

* @eturn the page title

*/

@roperty(nane = "title")

public abstract String getTitle(); O

/**

* Updates the page title.

* @aramtitle the new page title

*/

public abstract void setTitle(String title);

| **

Getting started with Chromattic

* Returns the page content.

* @eturn the page content

*/

@roperty(nane = "content")

public abstract String getContent(); O

| **

* Updates the page content.

* @aram content the new page content

*/

public abstract void setContent(String content);

The Page class is mapped to the page node type

The name property is mapped to the node name

Thetitle property is mapped to the title node property

The content property is mapped to the content node property

o R |

Chromattic uses code annotations to declare which and how classes are mapped to node types. The most
important annotation is the @r g. chromatti c. api . annot ati ons. Pri maryType that declares the mapping of a
class to a node type. Our class is annotated with the @r i mar yType annotation, the nane parameter specifies the
name of the node type mapped to the class.

Note

"
JCR defines two kinds of node types which are primary node type and mixin node type. By default
we denote by node type a primary node type. Mixin node type can also be mapped by Chromattic
that is explained in the chapter XY Z.

The @rg. chromattic. api . annot ati ons. Nane annotation targets Javabean property getters or setters and
indicates that the property is mapped to the name of the node. Indeed each JCR node has a mandatory name and
thisisthe way to expose it on aclass. As aresult the Page name property is mapped to the node name.

Like the @ame annotation the @rg. chromattic. api . annotati ons. Property annotation targets Javabean
properties. It specifies how a property is mapped to a node property. It has a mandatory name parameter that
specifies the node property name. The node property type does not need to be specified as it is deduced from
the class property. In our example, we map the content Javabean property to a content node property.

1.1.2. The JCR node types

Node types are important for JCR, they define the schema of the node data. In our application we have a page
node type that is modelled after the Page class. Chromattic can generate for you the node type definition when
the classes are compiled. It results in a nodet ype. xnl file resources located in the class output of the Java™
compiler.

The annotation org. chromatti c. api . annot at i ons. NodeTypeDef s instructs the compiler to generate the the
node type definitions in the XML format that can be used by the JCR server to create the node type. The
annotation targets a package and it generate the node type for any Chromattic class inside this package and in
the sub packages.

Example 1.2. The org.chromattic.docs.r eference.gettingstarted.package-info.java file package

@\odeTypeDef s package org.chromattic. docs.reference.gettingstarted,;

Getting started with Chromattic

i mport org.chromattic. api.annot ati ons. NodeTypeDef s;

=] Warning

The node type generation is still a work in progress and should be considered as an experimental
feature

1.1.3. The client

We have designed and mapped our Page object and now we will examine how to interact with a JCR server via
Chromattic. The goal of the client is very simple and focus on demonstrating the bootstrap of Chromattic and
the persistence of asimple Page in the Java Content Repository.

1.1.3.1. Chromattic bootstrap

The boostrap is the creation and the configuration of the Chromattic runtime. Usually the bootstrap occurs
during the initialization of the application, for instance in a web application, it is most often performed in a
Ser vl et Cont ext Li st ener initialization.

Chromattic bootstrap relies mainly on the chromatti cBui |l der object. The builder is configured with the
Chromattic application classes to obtain an instance of the chromat ti ¢ object. The chronat ti c object can be
used to create Chromat ti cSessi on objects. The Chromat ti cSessi on isthe main runtime APl used to interract
with Chromattic.

Chromatti cBuil der builder = ChromatticBuilder.create(); O
bui | der. add(Page. cl ass); 0O
Chromattic chromattic = builder.build(); O

O Createsthe builder object
0 Weadd the Page class to the builder object
O Now the Chromattic object can be created

1.1.3.2. Interacting with Chromattic objects

We have just explained how to obtain a chr omat t i ¢ object thanks to the builder. Now it is time to show how to
obtain and use the chr omat ti cSessi on with the goal to insert a new page node. Let's examine the code:

Chromatti cSessi on session = chromattic.openSession(); O
try
{
Page page = session.insert(Page.class, "index"); O
page.setTitle("Hell o Page"); O
page. set Content ("Hello World"); O
session.save(); O

}
finally

{

session.close(); O

}

Any Chromattic interaction requires to open a session
A new pageisinserted under the /index path

Set the title property

Set the content property

[B B B B

Getting started with Chromattic

0 Savesthe session to persist changesin the repository
O Wemust close the session to properly release the session

1.1.4. Project build

The project build is an important piece of the software infrastructure and Chromattic has been developped to
integrate seamlessly with the build.

Chromattic leverages the Java™-6 Annotation Processor Tool (abbreviated as APT) that works at the
Java™compiler level and therefore there is nothing much to do to integrate Chromattic in the build itself.

As many Object Relational Mapping tool, Chromattic needs a bit of instrumentation to make the magic work.
Chromattic does not modify existing classes, it takes the existing classes and adds new classes and that is
achieved thanks to the APT plugin. It means that instrumentation is performed at the compilation time by
generating Java™source file that are compiled by the compiler instead of generating those classes at the load
timein the virtual machine.

The only condition to enable Chromattic instrumentation is to have the Chromattic APT jar on the compilation
classpath. Nothing more, nothing less.

1.1.4.1. Building with Maven

Building with Maven is very easy and only requires a dependency on the Chromattic APl and APT module in
your pom file.

» The API dependency provides the Chromattic API classes prefixed with the or g. chromat ti c. api package.

<dependency>
<groupl d>org. chromatti c</ groupl d>
<artifactld>chromattic.api</artifactld>

</ dependency>

» The APT dependency triggers the Chromattic instrumentation.

<dependency>
<groupl d>org. chromat ti c</ groupl d>
<artifactld>chromattic.apt</artifactld>

</ dependency>
And that'sit, we have just configured our project.

1.1.5. Running the client

The client requires different jars for running

todo : provide an uber client jar

http://java.sun.com/javase/6/docs/technotes/guides/apt/index.html

Chapter 2. Type mapping

Chromattic establishes a correspondance between a Java class and a JCR node type. In most case there is a
trivial mapping between a Java class and a JCR node type, however both models are not the same. Chromattic
offers solutions for mapping JCR concepts like mixin and multiple type inheritance which are not native to the
Java language.

2.1. Primary type mapping

The org. chromat ti c. api . annot ati ons. Pri mar yType annotation creates a unique correspondance between a
Java class and JCR primary node type. The mapping between an annotated class and the primary type must be
unique for the JCR node type, therefore it is not possible to have the same node type mapped to more than one
classinside the same Chromattic application.

2.2. Property mapping

2.2.1. Property type mapping

JCR defines the following set of property types:

e The STRI NGtype
e The BOOLEAN type
* TheLOoNGtype

* The DOUBLE type
e The DATE type

¢ The NAME type

* TheBI NARY type

* ThePATHtype

The REFERENCE type
Any of those types except the REFERENCE type can be mapped to an object property.

REFERENCE types can be used, however this type is not mapped to a specific Java type, instead Chromattic
supports it thanks to the concept of relationship that will be explained in the Chapter 4, Reference mapping .

2.2.1.1. Generic data types

JCR provides two types to map generic data types:

* The JCR STRI NGtypeis mapped to the Javaj ava. | ang. St ri ng type.

* The JCR BI NARY type is mapped to the Javabyt e[] type or thej ava. i o. | nput St r eamtype.

Type mapping

The string type is pretty straightforward to use, you simplet get or set the string that is mapped to the JCR
property.

The binary type can be used in two different manners, the first one maps the Bl NARY type to a byte array. This
mapping style is similar to the string mapping except that a byte array is not immutable. The client has the
opportunity to alter the array as Chromattic cannot prevent it to be modified. This mapping style is very
straightforward too but has the inconvenient to load the whole stream into memory which is not always
desirable for very large streams.

The other manner maps the BI NARY type to anj ava. i o. | nput St ream This behavior is actually the JCR native
behavior and Chromattic providesit as well, asit has the benefit to use an input stream to read and write binary
data which is efficient for large binary content. This approach does not force to hold all the data in memory,
unlike the byte array approach. However it requires a little extra work from the developer to use the input
stream carefully.

To read the data, the property getter returns an input stream that provides access to the binary data. The stream
should be used as any other kind of input stream: consume data until the stream is empty and then close the
stream in a finally block. The stream must be used corrected, otherwise the entire content could be loaded in
memory and that would defeat the purpose of the stream based approach.

To write data, the property setter must be called with an input stream that is used to consume all the data
available. It means that on the return of the setter, the input stream shouldn't be used anymore for reading data
as Chromattic will close the stream. Again here, the stream must be used carefully.

2.2.1.2. Primitive types

The types BOOLEAN, LONG and DOUBLE are mapped to Java primitive types:

» The JCR BOOLEAN type is mapped to the Javabool ean type
* The JCR LONG typeis mapped to either the Javai nt or | ong type
« The JCR DOUBLE type is mapped to either the Java doubl e Or f | oat type

For each of those types, there is the choice between either the Java primitive type or the Java wrapper type.

2.2.1.3. Temporal type

JCR defines a DATE type that represents a date. Chromattic provides three different mappings for this type:

1. Javadate objects
a. java.util. Cal endar mapping, the same type exposed by the native JCR API.
b. java. util . Dat e mapping
2. java. | ang. Long Or | ong mapping exposing the value returned by Cal endar #get Ti meM | 1 i s()

Date objects objects are mutable by nature and Chromattic clones them when it is necessary to preserve the
data. A date object returned by Chromattic can be modified without changing mapped JCR value, likewise a
property update will read the value once and copy it.

2.2.2. Simple property mapping

Type mapping

The org. chromattic. api . annot ati ons. Property annotation binds an object to a node property. Our Page
shows several examples of property mapping using the @r oper t y annotation. This annotation has a mandatory
nanme parameter to provide the name of the corresponding JCR property.

@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
@rar get (El enent Type. METHOD)
public @nterface Property {

| **

* The jcr property nane.

* @eturn the jcr property nanme
*/

String nane();

/ *

Specify the property type of the napped property, the value nust be a | egal value referenced by
{@ode javax.jcr.PropertyType}. The default value returned is -1 which neans that the value is guessed
by Chromattic according to the type of the annotated property.

EE R U

@eturn the property type val ue.
* @ince 1.1

*/

int type() default -1;

The Property annotation can either annotate the getter or annotate the setter but it should be used only once
with read/write accessible properties.

2.2.2.1. Single valued property mapping

The most common mapping style between a single valued class and a hode property. The object property must
provide at |east a setter method or a getter method, probably both in most use cases, those methods must use the
same java property type.

A property getter method returns the JCR property value. If the property does not exist, the null value is
returned when the java property type is not a primitive type. Sometimes it can happen that the JCR property
does not exist but this property is mapped to a primitive type. When the situation occurs Chromattic throws a
Nul | Poi nt er Except i on, that behavior is similar to what happens when a null value is unboxed to its
corresponding primitive type.

A property setter method updates the JCR property value when it is invoked. For non primitive type it is
possible to delete the property by providing a null argument.

| **

* Returns the page title.

*

* @eturn the page title

*/

@roperty(nane = "title")

public abstract String getTitle(); O

| **

* Updates the page title.

*

* @aramtitle the new page title

*/

public abstract void setTitle(String title);

| **

* Returns the date of the page |ast nodification.
* @eturn the date of the last nodification

*/

@roperty(nane = "l astnodifieddate")

public abstract Date getlLastMdifiedDate(); O

Type mapping

| **

* Updates the date of the page |ast nodification.

*

* @aramdate the date of the |ast nodification
*
/
public abstract void setlLast MdifiedDate(Date date);

O Thetitle property is mapped the STRI NGtype
O thelast modified date property is mapped to the DATE type

The corresponding JCR node defines atitle property and lastM odifiedDate property:

<propertyDefinition autoCreated="fal se" mandatory="fal se" multiple="fal se" name="title" onParent Version="COPY" ¢
<val ueConstraints/>

</ propertyDefinition>

<propertyDefinition autoCreated="fal se" mandatory="fal se" multiple="fal se" name="I| ast nodi fi eddat e" onParent Ver si
<val ueConstraints/>

</ propertyDefinition>

2.2.2.2. Multi valued property mapping

JCR naturally provide support for multi valued properties, so does Chromattic. Chromattic gives you the choice
to use either an array or aj ava. util . Li st to accessthe data. A primitive array can be used when the type is a
primitive type.

| **

* Returns the list of the page tags.

*

* @eturn the list of tags

*/

@roperty(nane = "tags")

public abstract List<String> getTags(); U

O thetags property is mapped to a multi valued STRI NG type

The corresponding JCR node defines a tags properties:

<propertyDefinition autoCreated="fal se" mandatory="fal se" multiple="true" name="tags" onParent Versi on="COPY" prc
<val ueConstrai nts/>
</ propertyDefinition>

When alist of valuesis returned by a getter method, any madification to thislist is only visible to this list and
does not affect the JCR property values. When the JCR property does not exist, a null value is returned to the
caller.

To update the values of a JCR property, the property setter has to be invoked. The list of values is read once
and copied to the corresponding JCR property. If thelist isnull, it simply delete the property.

2.2.2.3. Mixing multi value and single value styles

It can be convenient to map a single valued property to a multi valued property. For instance a multi valued
JCR property exposed as a single valued property provides access to the first value of the values.

JCR single valued JCR multi valued
Javasingle valued trivial mapping access the first element
Java multi valued alistof sizel trivial mapping

Type mapping

The same multi valued JCR property can be exposed both as a single and multi valued property. The multi
valued property gives access to the complete list of values and the single valued property is useful when the
first value needs to be accessed.

2.3. Overview of other mapping styles

Chapter 3. Hierarchical mapping

Chromattic makes the usage of the JCR node hierarchy very natural thanks to relationship mapping. Chromattic
defines two mapping styles one-to-many/many-to-one and one-to-one mapping. The one-to-one mapping is
useful for accessing the particular child of a node, the one-to-many-many-to-one mapping is useful for
accessing residual node definitions defined by awildcard (*) name.

3.1. One-to-many/many-to-one hierarchical relationship
mapping

The usage of Java generics combined with different types of collection provides a flexible mapping. Java
generics alows collection filtering based on the type of the collection, it becomes handy when you need to
access the a subset of the child nodes filtered with a specific node type (make a chapter on genericity).

Chromattic provides access to the children of node with a Java collection. A bean annotates a collection valued
getter with the @neToMany annotation.

| **

* Returns the collection of page children.

*

* @eturn the children

*/

@neToMany

public abstract Coll ection<Page> get Children();

The getter method never returns a null value as a node always provides a set of children even if this set is
empty. Unlike for multi valued property collection, any modification to this collection will be reflected directly
by the underlying JCR node children and vice versa:

e Theadd(Page page) addsapage

e Therenove(Qbj ect o) removes apage

e Thecl ear () removesal the page children

* Theiterator() returnsaniterator that can be used to remove any child

The other collection methods of the collection class are read methods that won't modify the children and
provides various ways to deal with the children.

The Page object also providesto its parent with a property annotated with the Many Toone annotation. The getter
method returns the object associated to the parent node.

| **

* Returns the page parent.

*
* @eturn the parent
*
/
@manyToOne
public abstract Page getParent();

/**

* Update the page parent.

* @ar am page the parent

*/

public abstract void setParent(Page page);

10

Hierarchical mapping

A null value can be obtained in two particular situations:

1. When an object is associated to the root node, indeed the root node is the only node without a parent

2. When an object has a parent of a JCR node type that is not mapped to the Chromattic object returned the
getter

It is legal for an object to have several parent accessors when the corresponding JCR node type can have
different parent node types. When the various parent types share a common parent class, this class can be used
to have a single accessor instead. Ultimately it is possible to use the j ava. | ang. Obj ect type that isimplicitely
mapped to the nt : base node typen, the nt : base node type is the super type of al JCR node types. (todo: make
a section about that somewhere else to clarify)

3.1.1. Adding a child node

There are severa ways for adding a child and we are going to examine two of them in this section.

The first way to add a child is to use the collection returned by the parent object. As said earlier, any
modification to the collection is directly reflected into the corresponding JCR node.

Page child = session.create(Page.class, "bar"); O
Col | ecti on<Page> children = page.getChildren(); O
children.add(child); O

assert Sanme(page, child.getParent()); O

Create the transient page object

Obtain the children collection from the parent

The child becomes persistent and the bar node is created under the foo node
The parent is set to foo

O o0OoOoo

The second way is to use to add a child is to use the parent setter.

Page child = session.create(Page.class, "bar"); 0O
chil d. set Parent (page); 0O
assert True(page. get Children().contains(child)); O

O Createthe transient page object
O Thechild becomes persistent and the bar node is created under the foo node
0 Thechildren collection contains the child

Setting the parent to the child has the same effect than adding the child to the collection. Indeed we can notice
in both examples that the when one style is used, we get the same result: the parent getter returns the parent
object and the children collection contains the child.

In both case, Chromattic will use the name set on the child before it isinserted in its parent. The session cr eat e
method call takes as second argument the name of the future child. This name is stored temporarily on the
create child and is used when the node is effectively inserted.

3.1.2. Destroying a node

We have explained two ways for adding a child to a parent, we will now see that we can use the same methods
to destroy a node and its relationship to its parent (indeed in JCR, the only node with no parent is the root
node).

11

Hierarchical mapping

When achild is removed from its parent collection, it is removed.

children.remove(child); O
assert Fal se(page. get Children().contains(child)); O

0 Removing the child from the collection destroys the child
O Andthe parent does not contain the child anymore

Setting the parent of a Chromattic object to null forces Chromattic to remove the object and the associated
node.

child.setParent(null); O
assert Fal se(page. get Chil dren().contains(child)); O

O Setting the parent to null destroys the child
O And the parent does not contain the child anymore

3.1.3. Collection types

In our example we have examined the ManyToone side of the relationship based on aj ava. util. Col | ection
interface. Two other type of mapping are available java. util.List and java.util.Map, let's study what
would become our example with such mappings.

3.1.3.1. java.util.List mapping

The list mapping must be only used when the corresponding node type has defined its children to be ordered.
The list interface adds the notion of order to the collection interface, and using the order oriented method on the
list will affect the order of the children.

Example 3.1. Moving a child from thefirst position to the last position

chi l dren. add(chi |l dren. get (0));

3.1.3.2. java.util.Mp mapping

The map interface adds the notion of key which is very useful when the children needs to be accessed by their
key. Previously we have seen that when the child is created from the session, its name has to be specifed. When
the map interface is used, this is not necessary anymore, as the child name is specified when it is inserted with
theput (String key, Page val ue) operation.

Example 3.2. Child insertion

Page page = session. creat e(Page. cl ass);
chil dren. put ("foo", page);

Example 3.3. Obtaining a particular child

12

Hierarchical mapping

Page foo = children.get("foo");

Example 3.4. Child removal

chil dren. renove("fo0");

3.2. One-to-one hierarchical relationship mapping

In the Section 3.1, “One-to-many/many-to-one hierarchical relationship mapping " we explained how to map a
node and aits children. One to one hierarchical mapping is about mapping a node and one of its named children
thanks to a one-to-one relationship. The most important difference between the two mapping styles is that a
one-to-one relationship acts on a precise child defined by its name.

In our example, this type of relationship is used to model the relationship between a website and the root of the
page hierarchy of this website. The wbsi t e object is mapped to the website node and this node has a child
named rootpage. The one-to-one relationship between webSi t e objects and Page objectsis precisely defined for
the rootpage child of the website node.

Mapping one-to-many/many-to-one hierarchical relationship was only requiring the @neToMany and
@manyToOne annotations. One-to-one relationship mapping requires two additional annotations:

* The @wner annotation makes the distinction between the parent and the child of the relationship. The parent
object must be annotated with the @wner annotation and the child not.

* The @mappedBy annotation provides the name of the node by which the relationship is maintained. It contains
asingle parameter the is the name of the child.

Example 3.5. The rootPage property

| **

* Returns the root page of the website.

*
* @eturn the root page
*
/
@aner
@neToOne

@vappedBy("root")
public abstract Page get Root Page();

| **

* Sets the root page of the website.

*

* @aramroot the root page
*/
public abstract void setRoot Page(Page root);

Example 3.6. The site property

| **

13

Hierarchical mapping

* Returns the parent site.
*

* @eturn the parent site
*/
@neToOne

@mppedBy("root")
public abstract WebSite getSite();

/todo explain the dynamic of relationship life cycle

Page root = session.create(Page.class); O
site. set Root Page(root); 0O

assert Equal s(site, root.getSite()); O
sessi on. save();

0 Create the transient page object
0 The page becomes persistent and the root node is inserted under the site node
O The parent of the root page isthe site object

site. set Root Page(null); O

O Setting the root page to null destroys the relationship

14

Chapter 4. Reference mapping

The hierarchical tree structure supported by JCR is the default way to organize data. JCR provides a reference
mechanism for relationship between nodes, a hode has a pointer to target node via a property. The relationship
is based on two specific property types:

» The REFERENCE property type references atarget node using its UUID.

» The PATH property type references atarget node using its path.

The single kind of relationship supported by reference is one-to-many/many-to-one: a node references a target
node and a node can be the target of multiple nodes.

Note

9
Technically it should be possible to support many-to-many relationship using a multivalued
reference property. This feature could be implemented in the future.

4.1. One-to-many/many-to-one reference relationship mapping

Mapping single valued reference properties to Chromattic relationship relationship relies on Java collections, in
asimilar manner hierarchical one-to-many/many-to-one relationship does.

The @neToMany and @mknyToOne annotations declares the relationship, however as it is not a hierarchical
parent child relationship, the type of the annotation must be set to Rel at onshi pType. REFERENCE.

The Page object has areference to a Cont ent object. The @anyTone(type = Rel ati onshi pType. REFERENCE)
annotation on the content property of Page object declares the relationship from the Page side.

/**

* Returns the content associated to this page.

* @eturn the content
*/
@manyToOne(type = Rel ati onshi pType. REFERENCE)

@bppedBy (" content™)
public abstract Content getContent();

| **

* Set thet content on this page

*

* @aram content the content
*/
public abstract void setContent(Content content);

Conversely the cont ent object owns a collection of Page objects, each of those having a reference pointing to
this object. The #neToMany(type = Rel ationshi pType. REFERENCE) annotation on the pages property
declares the relationship from the cont ent side. Unlike the one-to-many relationship, the only possible type of
collection is the j ava. util . Col | ecti on interface because there isn't any notion of order, not name in such
relationship.

15

Reference mapping

| **

* Returns all the pages associated with this content.

*

* @eturn the associ ated pages

*/
@neToMany(type = Rel ati onshi pType. REFERENCE)
@vappedBy("content")
public abstract Collection<Page> get Pages();

Again here, the relationship between two objects is established when a Page object is added to the pages
collection of a Cont ent object or when a Cont ent object is set by invoking the set Cont ent (Cont ent cont ent)
method on the Page object.

4.2. One-to-many/many-to-one path relationship mapping

/todo /todo

16

Chapter 5. Groovy integration

5.1. Differences with the java version

In the Groovy version of Chromattic, the types are not abstract and annotations can be used directly on
properties. The Chromattic engine in the Groovy version is exactly the same than the Java version. Actually
Groovy and Java are interroperable

* Groovy and Java Chromattic objects can be used in the same Chromattic application
« A Chromattic application can be used by both Java or Groovy code

Before reading this part, you should already be familliar with Chromattic described in this guide. A simple
example of code with the Groovy version of Chromattic : Page. gr oovy (the equivalent of Page.java) in Groovy
is

package org.chromattic. docs. reference. groovy

i mport org.chromattic. api.annot ati ons. Name
i mport org.chromattic. api.annotations. Property
import org.chromattic. api.annotations. PrimaryType

/**
* @uthor Al ai n Defrance</ a>
* @ersion $Revision$
*
/
@ri maryType(nane = "gs: page")

cl ass Page {
/**

* The page nane.
=
@Narre def String nane O

| **

* The page title.
S
@roperty(nane = "title") def String title O

/**

* The page content.

*/

@roperty(nane = "content") def String content O

O Thename property is mapped to the node name
O Thetitle property is mapped to the title node property
O The content property is mapped to the content node property

5.2. Building a Groovy project with Chromattic

Chromattic is plugged to Groovy classes at compile time (this operation is based on AST transformation). So
the only thing to do is to have the chromattic.groovy jar in the compilation classpath.

5.2.1. Building with Maven

Just add the Maven dependencies in the pom.xml.

17

Groovy integration

<dependency>
<groupl d>org. chromat ti c</ groupl d>
<artifactld>chromattic.groovy</artifactld>
<scor e>conpi | e</ scor e>

</ dependency>

5.2.2. Building with ANT

Add the chromattic.groovy jar in the classpath in the build.xml.

<cl asspat h>

<pat hel enent pat h="${cl asspat h}"/>

<pat hel enent | ocation="lib/chromattic.groovy-1.1.0- SNAPSHOT-j ar-wi t h- dependenci es.jar"/>
</ cl asspat h>

5.2.3. Compiling with groovyc

Just add the chromattic.groovy jar in the classpath with the - cl asspat h argument

groovyc Page.groovy -classpath chronmattic.groovy-1. 1. 0- SNAPSHOT-| ar - wi t h- dependenci es. j ar

5.3. Runtime dependencies

To use Chromattic, you should have a JCR implementation in the runtime classpath. For example
chromattic.exo Maven dependency:

<dependency>
<groupl d>org. chromatti c</ groupl d>
<artifactld>chromattic.exo</artifactld>
<scope>runti me</ scope>

</ dependency>

5.4. How to access to JCR data through Chromattic objects in
Groovy

Simply access to the property content thanks to getter, setter or property :

package org.chronmattic. docs.reference. groovy

import junit.framework. Test Case

i nport org.chronattic.api.ChronatticBuil der

import org.chromattic.api.Chronmattic

i nport org.chronmattic.api.ChromatticSession

import org.chromattic. docs. reference. groovy. Page

/**

* @uthor Al ai n Defrance</ a>

* @ersion $Revision$

*/

cl ass G oovyTest Case extends TestCase {

voi d testGroovy() {

ChromatticBuil der builder = ChromatticBuilder.create(); O
bui | der. add(org. chromatti c. docs. ref erence. groovy. Page. cl ass); O
Chromattic chromattic = builder.build(); O

Chromatti cSessi on session = chromattic. openSession(); O

18

Groovy integration

Ooooooooono

try

{
Page page = session.insert(Page.class, "index"); O
page.setTitle("Hello Page"); O
page.content = "Hello World"; O

session. save(); O

String title = page.title; 0O
String content = page.getContent(); (11)

}
finally

{

session.close(); O
}
}

Creates the builder object

We add the Page class to the builder object

We must close the session to properly release the session
Now the Chromattic object can be created

Any Chromattic interaction requires to open a session
A new page isinserted under the /index path

Set the title property with setter

Set the content property without setter

Saves the session to persist changes in the repository
Get the title property without getter

Get the title property with getter

19

	Chromattic
	Table of Contents
	Preface
	Chapter 1. Getting started with Chromattic
	1.1. The website example
	1.1.1. The Page object
	1.1.2. The JCR node types
	1.1.3. The client
	1.1.3.1. Chromattic bootstrap
	1.1.3.2. Interacting with Chromattic objects

	1.1.4. Project build
	1.1.4.1. Building with Maven

	1.1.5. Running the client

	Chapter 2. Type mapping
	2.1. Primary type mapping
	2.2. Property mapping
	2.2.1. Property type mapping
	2.2.1.1. Generic data types
	2.2.1.2. Primitive types
	2.2.1.3. Temporal type

	2.2.2. Simple property mapping
	2.2.2.1. Single valued property mapping
	2.2.2.2. Multi valued property mapping
	2.2.2.3. Mixing multi value and single value styles

	2.3. Overview of other mapping styles

	Chapter 3. Hierarchical mapping
	3.1. One-to-many/many-to-one hierarchical relationship mapping
	3.1.1. Adding a child node
	3.1.2. Destroying a node
	3.1.3. Collection types
	3.1.3.1. java.util.List mapping
	3.1.3.2. java.util.Map mapping

	3.2. One-to-one hierarchical relationship mapping

	Chapter 4. Reference mapping
	4.1. One-to-many/many-to-one reference relationship mapping
	4.2. One-to-many/many-to-one path relationship mapping

	Chapter 5. Groovy integration
	5.1. Differences with the java version
	5.2. Building a Groovy project with Chromattic
	5.2.1. Building with Maven
	5.2.2. Building with ANT
	5.2.3. Compiling with groovyc

	5.3. Runtime dependencies
	5.4. How to access to JCR data through Chromattic objects in Groovy

